Justice, Equity, Diversity, Inclusion (J. E. D. I) in Engineering: Practices and Possibilities

Dr. Ruthmae Sears
University of South Florida

Regional National Association of Engineering Student Councils (NAESC)

November 2, 2021

Outline

- Define J.E.D.I
- Discuss data trends
- Imagine possibilities

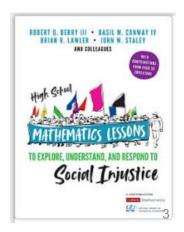
What Is Social Justice?

Access

Ensuring access to and the fair distribution of human and material resources in society.

Participation

Creating equitable opportunities for people to access information to be fully participatory in decisions that affect their and others' lives.


"Social justice means considering the contributions and right of each and every person in society across four ideas: access, participation, empowerment, and human rights (Berry et al, 2020, p.18)

Human Rights

Acknowledging the rights inherent to each and every human being, regardless of race, sex, gender, nationality, ethnicity, language, religion, or any other status. Human rights include the right to life and liberty, freedom from slavery and torture, freedom of opinion and expression, the right to work and education, and many more (United Nations, 2006).

Empowerment

Supporting people's sense of agency in taking advantage of opportunities society affords as well as working toward eliminating all forms of oppression.

SOUTH FLORIDA

What is social justice?

"While a single definition of social justice may be difficult to come by, the reality is that social justice movements rely on their own functional definitions every day in doing their work" (Riley,2008, p.2)

"The Columbia-Barnard wiki on social justice movements in New York City seeks to categorize organizations by topics, which gives some sense of what this group considers to comprise social justice issues as follows:

- Arts-based activism
- Community health and environmental justice
- Economic justice
- Education
- Housing/gentrification
- Immigrant rights
- Lesbian, gay, bisexual, and transgender (LGBT) and two spirit
- Police monitoring/community protection
- Prison crisis
- Reparations
- Women and gender
- Worker's rights
- Youth" (Riley, 2008, p.3)

Social justice means complete and genuine equality of all people.—Paul George, Executive Director Peninsula Peace and Justice Center

Social justice means moving toward a society where all hungry are fed, all sick are cared for, the environment is treasured, and we treat each other with love and compassion.—Medea Benjamin, Co-founder Global Exchange and Code Pink (Figure 1.1)

A long and mysterious historical process in which those who are excluded and exploited by social forces of privilege and power attempt to consociate into movements that struggle for: a more equitable distribution of social and economic goods; for greater personal and political dignity; and for a deeper moral vision of their society. Social justice is a goal toward which we move, always imperfectly, and persons and groups are motivated to realize it by their deepest spiritual and political traditions. Justice is only meaningful when it is historically specific and embodied (as opposed to theoretical or abstract).—Ched Myers, ecumenical activist, Bartimaeus Cooperative Ministries

"Social Justice Work" is work that we do in the interest of securing human rights, an equitable distribution of resources, a healthy planet, democracy, and a space for the human spirit to thrive.—Innosanto Nagara, Co-founder DesignAction Collective

Social justice means no kids going to bed hungry, no one without shelter or healthcare and a free and lively discussion and participation by all people in the political direction and organization of our communities and nation.—Kirsten Moller, Executive Director and Co-founder, Global Exchange

[after a longer definition]...It means that those of us who have privilege must be willing to give up those things that cannot be sustained in a fair world—especially those things that use an unfair percentage of the world's environmental resources.—Rick Ufford-Chase, International Director, BorderLinks

(Riley, 2008, p.4)

+ Step1. Via Positiv Step 4. Via Transformativa What is to be solved? Has the suffering/injustice For whom is it to in the world been be solved? reduced? Step 3. Via Step 2. Via Negativa Creativa Have all creative What are ethical and critical considerations? thinking skills been Societal? Global employed? Environmental?

Engineering for social justice (E4SJ)

"We define engineering for social justice (E4SJ) as engineering practices that strive to **enhance human capabilities** (ends) through an equitable **distribution of opportunities and** resources while reducing **imposed risks and harms** (means) among agentic citizens of a specific community or communities" (Leyden, & Lucena, 2018, p. 15)

"The E4SJ criteria below include:

- (1) Listening contextually
- (2) Identifying structural conditions
- (3) Acknowledging political agency/ mobilizing power
- (4) Increasing opportunities and resources
- (5) Reducing imposed risks and harms
- (6) Enhancing human capabilities "(Leyden, & Lucena, 2018, p. 21)

Engineering Justice (Grimes, & Grimes, 2014)

Table 1. Engineering social justice issues of product design

Issues of Product Design	S	ub-Issues	Examples		
Accessibility	Ability to functionally use a product		Staircase versus ramp		
			Text-based versus graphical user interface		
	Ability to acquire product		Monetary costs		
			Geographic markets		
Sustainability	Production Depletion of Resource		Depletion of valuable materials		
			Harm to environment		
		Worker Harm	Use of toxic materials		
			Hazardous production procedures		
	Consumption	Depletion of Resources	Power consumption to run product		
			Resources needed to use product		
		Consumer Harm	Hazardous materials		
			Hazardous for use		

Table 2. Project choice outcomes

	Benefits Stakeholders	Harms Stakeholders
Benefits Impactees (Environment, Consumers, Workers, and Society)	1 Simultaneously Beneficial	2 Hurts the stakeholders but benefits impactees
Harms Impactees (Environment, Consumers, Workers, or Society)	3 Benefits the stakeholders but hurts impactees	4 Simultaneously Detrimental

What are your experiences with considering social justice in engineering?

Reflecting on social justice in the case of Hurricane Katrina (Leyden & Lucena, 2018, p. 2)

"Engineers design, build and operate complex and imposing systems, capable of influencing the lives of millions of people, as well as the allocation of resources (e.g., water, energy), opportunities (e.g., access to work and commerce), risks and harms (e.g., flooding nuclear disasters, groundwater contamination), and how different social groups receive these differently" (Leyden & Lucena, 2018, p.2)

- In the case of Katrina, the failure of the levees in New Orleans affected residents who were poor, mostly black, and some with disabilities more than any other social groups, taking away their resources... Among others, questions that often remain neglected in cases like the design of the levee system include:
 - Who will be at the most and least risk when the system fails?
 - How many deaths are acceptable when the system fails?
- What costs will those in charge incur if they improve the system? What happens if they do nothing?
- When a system fails (because it will eventually if not improved), how will people at risk be evacuated? (Leyden & Lucena, 2018, p.2)

What additional social questions can be posed from an engineering perspective relative to the impact of Hurricane Katrina?

Engineering Justice: Attending to Maslow's Hierarchy of Needs (Grimes, & Grimes, 2014)

Table 3. Maslow's theory adapted and applied to engineer profession

Level	Need	Individual Engineer Development - Motivation	Engineer - Team Motivation	Engineering Product Development
Highest Level	Self- actualization	Realization of Potential	Team has more freedom to determine its path.	Product is something to be proud of and will be for years to come.
	Esteem	Good opinion of self Team is evaluated positive for high quality performance.		Components of the product can easily be rearranged
	Love	Acceptance by organization	Team members feel they belong to the team	Can make necessary changes to fix any problems that exist.
	Safety	Safety Needs – Safety of the Software from external problem(s) (hardware, malicious behavior, etc.)	Safety of the Software from external problem(s) (hardware, malicious behavior, etc.)	Solution will fall within budget requirement and can be created.
Lowest Level	Physiological Physical Needs – Engineer can function.		Team members perform their function as a team and can deliver their product.	Specifications need to be defined and a general determination of whether it will be possible to make it work.

What are your thoughts of the conversation in the cartoon?

How would you respond to promote social justice in education?

*** Sunday April 11, 2010 SCOTT **ADAMS** NOW I'LL HAVE TINA SAY THE USER THE BETA TEST ADD AN IMPRACTICAL NEEDS TO LUBE THE WENT WELL. THANK IT'S STANDARD MAINTENANCE REQUIRE-PRODUCT TEN TIMES YOU, DILBERT. WHAT? MENT TO THE MANUAL A DAY WITH THE WAX

AND WE'RE READY TO

PROCEDURE.

FROM A BEAR'S EAR.

Equity(National Academies Press, 2012, P.278)

- The term "equity" has been used in different ways by different communities of researchers and educators.
- Equity as an expression of socially enlightened selfinterest is reflected in calls to invest in the science and engineering education of underrepresented groups simply because American labor needs can no longer be met by recruiting among the traditional populations.
- Equity as an expression of social justice is manifested in calls to remedy the injustices visited on entire groups of American society that in the past have been underserved by their schools and have thereby suffered severely limited prospects of high-prestige careers in science and engineering.
- Other notions of equity are expressed throughout the education literature; all are based on the commonsense idea of fairness—what is inequitable is unfair. Fairness is sometimes considered to mean offering equal opportunity to all.

Equality

The assumption is that everyone benefits from the same supports. This is equal treatment.

Equity

Everyone gets the supports they need (this is the concept of "affirmative action"), thus producing equity.

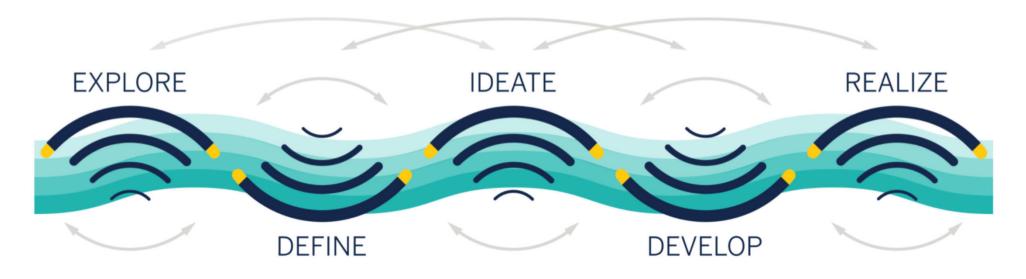
Justice

All 3 can see the game without supports or accommodations because the cause(s) of the inequity was addressed.

The systemic barrier has been removed.

Access Identity Power Achievement

Dimensions of Equity

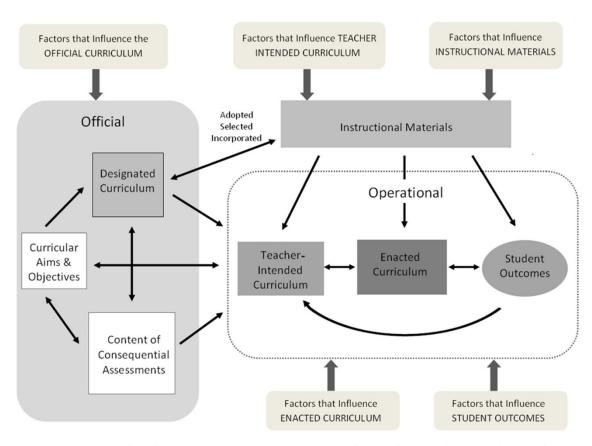

Gutiérrez (2012) identified four dimensions: access, achievement, identity and power (p.19-20).

- Access relates to the tangible resources that students have available to them to participate in mathematics.
- **Achievement** involves, among other things, participation in a given class, course-taking patterns, standardized test scores and participation in the math 'pipeline' (e.g. majoring in mathematics in college, having a math-based career).
- Identity dimension concerns itself with a balance between self and others. A
 window/mirror metaphor is useful here: that is, students need to have opportunities to see
 themselves in the curriculum (mirror), as well as have a view onto a broader world
 (window).
- Power dimension takes up issues of social transformation at many levels.

It's Time for Engineering to Be Equity-Centered (Gallimore, 2021)

Baked-In Biases

- Women are 17 percent more likely than men to die in a car crash and 73 percent more likely to be seriously injured. Why? In part because crash-test dummies are modeled on men.
- Algorithms keep poor people out of jobs and housing and lead to Black people being held in police custody because they were wrongly identified by a system optimized to recognize features of light-skinned faces.
- Engineered tools have led to improvements in productivity that helped to either entrench or exacerbate income inequality -- limiting opportunities for some while increasing them for others.



Equity-centered engineering is foundational (Gallimore, 2021)

- It starts with education.
- Society demands rigor in engineered systems, so it goes without saying that technical acumen is a hallmark of engineering education. But engineering is a people-first field. We do not make or use technology in a way that is separate from the culture and society we are part of. We need to teach that in required engineering coursework, threaded throughout the academic experience, as a practical means of addressing or preventing social problems that materially affect the field and society at large.

https://www.insidehighered.com/views/2021/08/30/diversity-equity-and-inclusion-should-be-required-engineering-schools-curricula

- How can we help engineering students promote equitable opportunities in their personal, academic, and professional activities?
- What can faculty do to attend equity in engineering curriculum?

Visual Model of the Curriculum Policy, Design, and Enactment System (Remillard & Heck, 2014, p. 709)

Strategies that can be used to promote diversity and inclusion in software development curriculum (Garcia et al., 2019, p.796)

- Define the indicators of inclusive contexts: equality of opportunities, rights, access to work, treatment, training, access to positions of management and direction, remuneration, and work-life balance, as well as determining the degree of awareness and awareness regarding to the gender gap, people with disabilities or other groups at risk of social exclusion.
- To introduce a coach or external expert figure to contribute to a real world/business vision about technology, diversity and ethics.
- To conduct occasional talks during the course to allow the discovery of different experiences within the technological field and where diversity and inclusion concepts in software development are reflected.
- To introduce gamification techniques to activate the students' motivation about diversity and inclusion within the technological area.

Diversity

 Diversity considers similarities and differences in terms of age, ethnicity, disability, gender and religion, as well as less visible differences such as sexual orientation, disability, religion, educational background, personality type, nationality etc.

Diversity

"Diversity considers similarities and differences in terms of age, ethnicity, disability, gender and religion, as well as less visible differences such as sexual orientation, disability, religion, educational background, personality type, nationality etc." (Royal Academy of Engineering, 2018, p. 6)

"The challenge of diversity, largely in terms of students' profiles or contextual features, is endemic in western education, and is often argued to require differentiation as a response. This can be seen in the presence of different curricula, text materials, tasks, structures or pedagogies. ..." (Bishop, Tan, Barkastsas, 2014, P. v)

NATIONAL SOCIETY OF PROFESSIONAL ENGINEERS

NSPE statement on Diversity in Engineering

It is the policy of NSPE to create a diverse and welcoming environment for everyone interested in the licensed practice of engineering. NSPE recognizes the benefits of a diverse population of licensed engineers in shaping the future of engineering. Diverse backgrounds foster unique contributions and capabilities and create an inclusive community ultimately leading to a more creative, effective and technically respected community. NSPE proactively encourages diversity in all areas of the engineering profession and within the organization. NSPE's business entities and volunteer groups are committed to developing business practices and position statements in support of this policy. (NSPE Committee on Policy and Advocacy, Professional Policy No. 01, 2017)

https://www.nspe.org/resources/issues-and-advocacy/professional-policies-and-position-statements/diversity

Driven by Diversity (Ferrini-Mundy, 2013, p.278)

Engineering educators

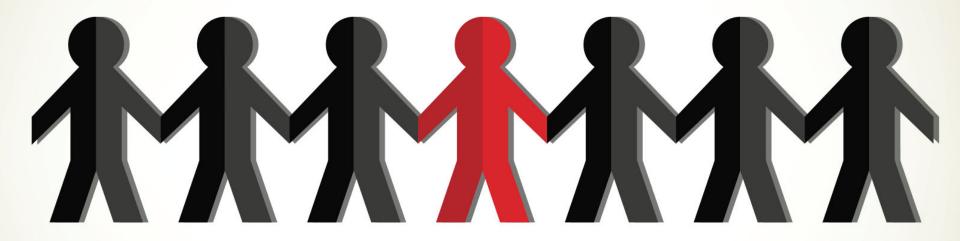
- Evidence based. objective professionals
- Learn about inherent bias
- Purposeful in challenging biases
- Creatively discuss and teach about diversity and difference

Engineering students

- Increasingly diverse
- Broader experiences drawn into engineering
- Opportunities for a wider group of people
- Practice, reflect, adapt

Graduates

- Understand and are purposefully inclusive
- Bring broader social capital on which engineering can draw
- Innovative


Engineering workforce

- Wider capability to tackle complex global problems
- Has diverse effective teams with increased engagement
- Avoid errors of 'bias by design'
- Innovative

Diversity-led innovatior

"Diversity of perspectives, ideas, and priorities comes from varied backgrounds. experiences, and cultures, and can help shape science and engineering. As science increasingly is done in teams, collaborations bring diversity to research. Diverse experiences and interactions can support cognitive growth and critical thinking, can benefit problem-solving, and are priorities among STEM (science, technology, engineering, and math) businesses for global competition

- How to Provide the STEM Workforce for Tomorrow?
 - Equitable opportunity to learn from excellent K-12 teachers
 - Widespread opportunity to engage in authentic, inspiring STEM learning inside and outside of school.
 - Recruit and retain a wide diversity of students into undergraduate STEM courses and majors.
 - Preparation for all graduate students for the international science workplace."

Lack of Diversity in Engineering (Chen et al., 2019, p. 330).

- "Within engineering, colonial, White and masculine knowledge has historically been privileged over other ways of knowing and has become the dominant discourse (Baillie and Catalano 2009; Godfrey and Parker 2010; Leydens and Lucena 2017; Riley 2008). Little recognition appears to exist that, not only does the ethnocentricity and masculinity of engineering perpetuate the lack of diversity in engineering, but that mathematical and scientific processes are not race-, gender- and culture-free (Godfrey and Parker 2010).
- This dominant approach undervalues the lived realities, perspectives and epistemologies of students and faculty who do not fit into this dominant category. Recognizing and addressing this systemic bias created by dominant discursive practices is critical for successfully reforming engineering higher education to be more inclusive, particularly when the work is delegated to women and faculty of colour." (Chen et al., 2019, p. 330)

Racial and ethnic group representation in STEM occupations

% of employed who are ____ and total number of workers in each occupation

All employed, ages 25 and older	Black 11%	Hispanic 17%	Asian 6%	Other 3%	White 63%	Total workers
Computer workers	7	8	20	3%	62	4,966,711
Computer support specialists	11	11	11	3	64	611.775
Computer scientists and systems analysts/web developers	10	9	14	3	64	1.636.033
Network and computer systems administrators	9	9	11	3	68	210,647
Database administrators	7	6	20	3	63	116.318
Computer and information systems managers	6	7	15	3	70	610,113
-	4	7	20	2	67	371,382
Computer programmers	4	5	33	3	54	1.410.502
Software developers, applications and systems software Mathematical workers	9	8	16	3	64	305,242
	12	10	11	4	64	,
Operations research analysts		7	23	3	62	148,438
Misc. mathematical science, incl. mathematicians, statisticians	6 4	3	23 16	2	62 75	127,033
Actuaries	5	9		2	71	29,772
Engineers and architects	9		13 8	3	66	3,034,215
Engineering technicians, except drafters		13		2	54	407,163
Computer hardware engineers	8	5	31			50,187
Marine engineers and naval architects	8 7	6 7	5 12	3 3	77 72	14,061
Environmental engineers	6					28,676
Electrical and electronics engineers		7 9	18	3	66	218,654
Aerospace engineers	5	_	13	3	71	125,675
Civil engineers	5	9	11	2	73	358,060
Engineers, all other	5	8	18	3	67	554,731
Industrial engineers, including health and safety	4	9	13	2	72	217,249
Chemical engineers	4	6	15	2	73	60,081
Materials engineers	4	6	14	3	72	42,161
Petroleum, mining, mining safety and geological engineers	4	11	11	2	72	33,431
Mechanical engineers	4	8	12	2	74	272,277
Drafters	4	12	7	2	74	145,989
Surveyors, cartographers and photogrammetrists	4	6	3	2	85	34,104
Surveying and mapping technicians	4	9	1	3	82	56,782
Architectural and engineering managers	3	6	12	2	77	171,836
Architects, except naval	3	10	11	2	73	212,005
Sales engineers	2	9	6	3	80	40,093
Life scientists	6	8	19	3	65	340,153
Agricultural and food science technicians	12	15	8	3	62	36,591
Biological technicians	9	16	11	5	59	20,389
Medical scientists and life scientists, all other	6	6	30	3	55	137,019
Natural science managers	5	5	10	3	77	20,965
Agricultural and food scientists	5	5	9	3	78	23,584
Biological scientists	3	7	14	3	73	81,683
Conservation scientists and foresters	2	4	1	3	90	19,922

Notes: Based on employed adults ages 25 and older. STEM stands for science, technology, engineering and math occupations. White, Black and Asian adults include those who report being only one race and are not Hispanic. Hispanics are of any race. Other includes non-Hispanic American Indian or Alaskan native, non-Hispanic Native Hawaiian or Pacific Islander and non-Hispanic two or more major racial groups. Source: Pew Research Center analysis of 2017-19 American Community Survey (IPUMS).
"STEM Jobs See Uneven Progress in Increasing Gender, Racial and Ethnic Diversity"

PEW RESEARCH CENTER

Racial and ethnic group representation across STEM degree fields

Among degree recipients at each level, % who are ...

	White	Black	Hispanic	Asian	Other
Health-related					
Bachelor's	63	9	12	7	3
Master's	63	11	9	8	3
Research doctorate	64	12	6	7	3
Professional doctorate	60	6	7	18	3
Life science					
Bachelor's	60	7	13	13	5
Master's	62	7	9	12	4
Research doctorate	68	5	7	10	3
Physical science					
Bachelor's	66	5	12	10	5
Master's	72	4	9	7	4
Research doctorate	73	3	6	9	3
Computer science					
Bachelor's	55	9	11	16	4
Master's	49	13	8	18	4
Research doctorate	60	7	6	13	4
Mathematics					
Bachelor's	62	5	12	14	4
Master's	64	4	8	15	3
Research doctorate	68	3	6	11	3
Engineering					
Bachelor's	65	5	12	11	4
Master's	62	5	10	13	3
Research doctorate	64	4	6	14	3

Note: Degrees awarded for science, technology, engineering and math fields (STEM) based on U.S. citizens and permanent residents. Engineering includes architecture. White, Black and Asian adults include those who report being only one race and are not Hispanic. Hispanics are of any race. Other includes non-Hispanic American Indian or Alaskan native, non-Hispanic Native Hawaiian or Pacific Islander and non-Hispanic two or more major racial groups.

Source: U.S. Department of Education, National Center for Education Statistics, Integrated Postsecondary Education Data System analyzed using the National Center for Science and Engineering Statistics Interactive Data Tool, 2017-18 school year.

"STEM Jobs See Uneven Progress in Increasing Gender, Racial and Ethnic Diversity"

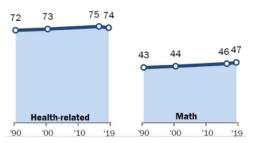
PEW RESEARCH CENTER

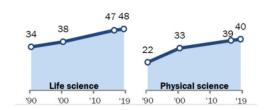
Fry, R., Kennedy, B., & Funk, C. (2021, April 1). STEM jobs see uneven progress in increasing gender, racial and ethnic diversity. PEW research center. Retrieved from https://www.pewresearch.org/science/2021/04/01/stem-jobs-see-uneven-progress-in-increasing-gender-racial-and-ethnic-diversity/

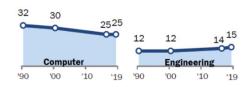
21

Women's representation in STEM occupations

% of employed who are women and total number of workers in each occupation


	Women	Total workers
All employed, ages 25 and older	47%	137,400,000
Computer workers	25	4,966,771
Database administrators	36	116,318
Computer scientists and systems analysts/web developers	30	1,636,033
Computer and information systems managers	29	610,113
Computer support specialists	25	611,775
Computer programmers	22	371,382
Software developers, applications and systems software	19	1,410,502
Network and computer systems administrators	19	210,647
Mathematical workers	47	305,242
Operations research analysts	50	148,438
Misc. mathematical science, incl. mathematicians, statisticians	46	127,033
Actuaries	37	29,772
Engineers and architects	15	3,034,215
Environmental engineers	28	28,676
Architects, except naval	28	212,005
Industrial engineers, including health and safety	21	217,249
Drafters	20	145,989
Surveyors, cartographers, and photogrammetrists	20	34,104
Chemical engineers	18	60,081
Engineering technicians, except drafters	17	407,163
Civil engineers	14	358,060
Computer hardware engineers	14	50,187
Engineers, all others	14	554,731
Materials engineers	13	42,161
Aerospace engineers	13	125,675
Petroleum, mining, mining safety and geological engineers	11	33,431
Architectural and engineering managers	11	171,836
Electrical and electronics engineers	10	218,654
Surveying and mapping technicians	9	56,782
Sales engineers	9	40,093
Mechanical engineers	8	272,277
Marine engineers and naval architects	8	14,061
Life scientists	48	340,153
Natural science managers	56	20,965
Medical scientists and life scientists, all other	55	137,019
Biological technicians	51	20,389
Biological scientists	49	81,683
Agricultural and food science technicians	36	36,591
Agricultural and food scientists	35	23,584
Conservation scientists and foresters	27	19,922


Note: Based on employed adults ages 25 and older. STEM stands for Science, technology, engineering and math occupations. Source: Pew Research Center analysis of 2017-19 American Community Survey (IPUMS).


PEW RESEARCH CENTER

Women remain underrepresented in physical sciences, computing and engineering jobs

Share of employed in each occupational group who are women (%)

Note: Based on employed adults ages 25 and older, Engineering includes architects.

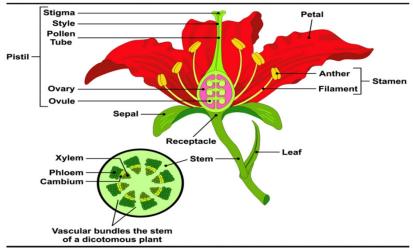
Source: Pew Research Center analysis of 2017-19 American Community Survey (IPUMS).

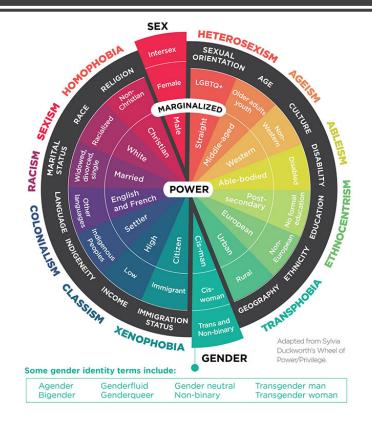
"STEM Jobs See Uneven Progress in Increasing Gender, Racial and Ethnic Diversity"

PEW RESEARCH CENTER

Women representation in STEM occupation

- 1. What factors contribute to the lack of diversity in STEM?
- 2. What could be done to increase diverse representation in STEM?
- 3. What additional information should be included in the data shared relative to diversity?


Fry, R., Kennedy, B., & Funk, C. (2021, April 1). STEM jobs see uneven progress in increasing gender, racial and ethnic diversity. *PEW research center*. Retrieved from https://www.pewresearch.org/science/2021/04/01/stem-jobs-see-uneven-progress-in-increasing-gender-racial-and-ethnic-diversity/


[&]quot;STEM Jobs See Uneven Progress in Increasing Gender, Racial and Ethnic Diversity"

Intersectionality and Identity

Who experience the impact of intersectionality? Why is it important to be aware of intersectionality and identity?

Describe characteristics that makes you a unique STEM professional, and factors that support you and keep you committed to becoming a leading STEM professional.

Famous Engineers

Jemison

Jerry Lawson 1940-2011

Elijah McCoy 1844-1929

Otis Boykin 1920-1982

George Robert Carr... 1939–2020

Norbert Rillieux 1806-1894

Scarlin Hernandez Franklin Chang-Diaz Ellen Ochoa

Nicole Hernandez Hammer

Vanessa Galvez

Guillermo González Camarena

Lynn Conway

Allan Hellman 1904-1982

Astrid Guyart Jon Hall

Granville

1856-1910

Woods

Christopher Strachey

1916-1975

Peter Landin 1930-2009

1951–2012

Inclusion

Figure 1: A theoretical approach to change: A three-pronged approach to inclusive engineering education (informed by Soudien, 2010)

Representation: Increasing numbers of underrepresented groups Ideological approach: including adopting thinking, systems and processes that enable minority groups to contribute and lead change

Practical
engineering and
technology related
actions to deliver
inclusive engineers

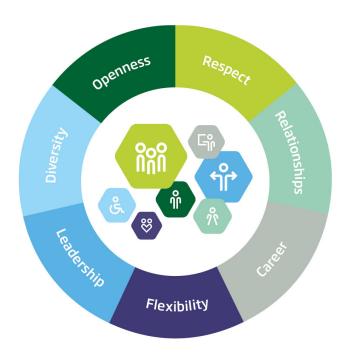
Self- actualisation:
Everyone 'practices'
inclusive behaviours =
innovation

Esteem: Positive experiences
reinforce career confidence

Belonging: Continually working at being
inclusive: people and in design

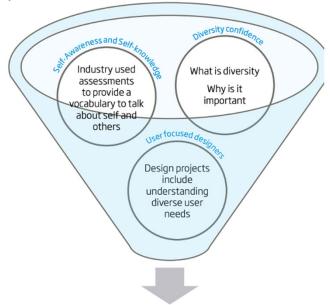
Safety: Safe, respectful environment

Physiological: Technological and/or teaching competence


Inclusion is the extent to which an individual feels valued for who they are in terms of personal and professional background, experience and skills, and the extent to which an individual feels they belong or 'fit' in the engineering profession and in their organization "(Royal Academy of Engineering, 2018, p. 6)

"When the notion of inclusion is used as an ideology, the most extensive discourse concerns equity ...; when it is used as a way of teaching, the most extensive discourse relates to teaching interventions for ...engagement. "
(Roos, 2018, p. 25).

INCLUSION

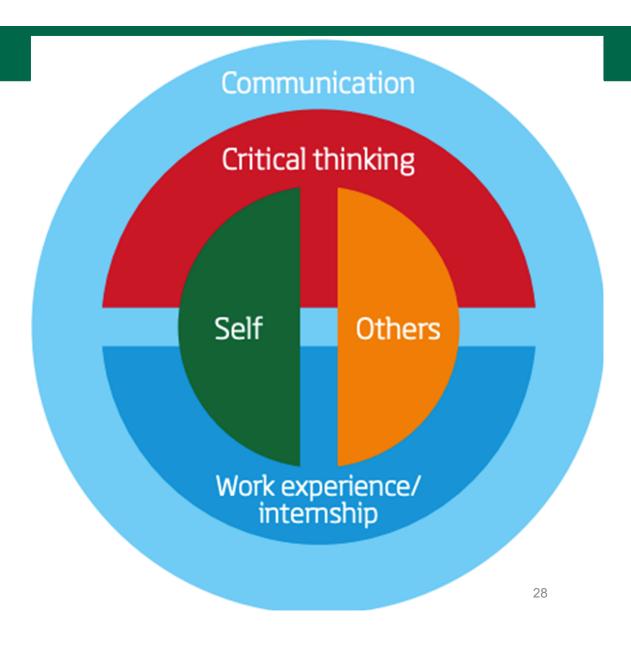

of all voices and visions

Inclusion within engineering (Farrell, et al., 2017, p. 5)

- "In order to be inclusive, research-based instructional practices such as active learning, problem-based learning, and service learning, must be carefully designed not to reproduce conventional power structures within engineering
- Specific recommendations for practical implementation include collaborative problem solving in a space where it is safe to make mistakes, empowering students to bring prior knowledge and experience into the classroom and learning to claim authority, and exploring the people who made important contributions to the field (especially non-majority individuals).
- Mills, et al. frame their work on gender-inclusive engineering within constructivist theory, focusing on the assumptions about prior experience and interest that are inherent in the curriculum, methods, classroom management and assessment."

Improving the outcomes of student team working experiences to be more relevant to the workplace and society (Royal Academy of Engineering, 2018, p. 29).

Informed and valuable team working experiences

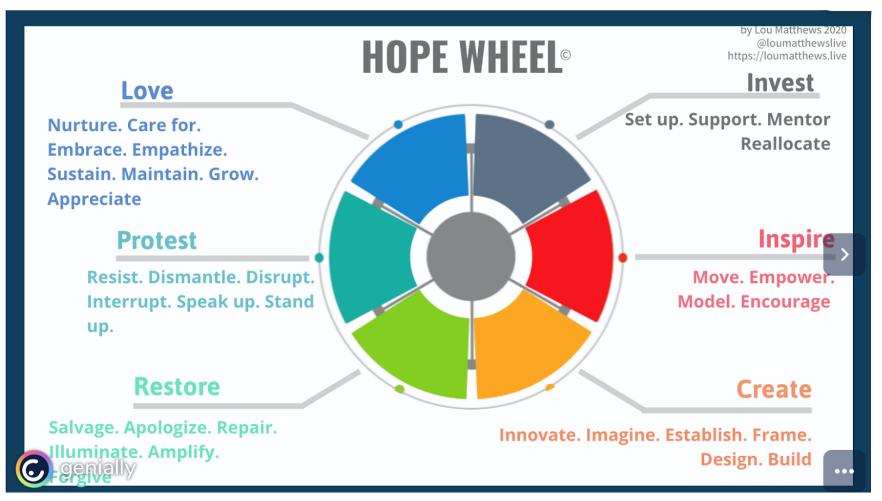

How is excellence judged in your area of engineering?

How might social stereotypes get folded into these definitions of excellence?

(National Academies of Science, 2018, p.2)

SOUTH FLORIDA

Five elements for the practice of inclusive professional skills (Royal Academy of Engineering, 2018, p. 37)



Strategies to promote JEDI within your organizations and affiliations (National Academies of Science, 2018, P.9-10)

- Examine organizations' institutional structures to determine whether these structures are perpetuating bias.
- Make diversity and inclusion activities pervasive and part of daily practice in an organization rather than compartmentalized and periodic.
- Be systemic rather than programmatic in promoting diversity and inclusion in organizations.
- Incorporate diversity and inclusion considerations, such as the Safe Zone training workshops offered by ASEE, into organizations' discussions and activities.
- Ensure that codes of conduct in academic and industrial organizations mention harassment, bias, and discrimination.
- Set expectations for representation by historically underrepresented groups.
- Consider different dimensions of diversity and inclusion to see which groups are doing well and which are not.
- Involve institutional leadership in discussions of diversity and inclusion issues so that diversity and inclusion are part of leaders' expectations.
- Make diversity and inclusion a core aspect of hiring and evaluation processes.

https://www.nap.edu/read/25323/chapter/1

Matthews, L. E., Jessup, N. A., & Sears, R. (2021). Looking for "us": power reimagined in mathematics learning for Black communities in the pandemic. *Educational Studies in Mathematics*, 1-18.

References

- Adams, S. (2010). Dilbert. Retrieved from http:// dilbert.com/strips/comic/2010-04-11/
- Bishop, A., Tan, H., & Barkatsas, T. N. (Eds.). (2014). *Diversity in mathematics education: Towards inclusive practices*. Springer.
- Chen, D. A., Mejia, J. A., & Breslin, S. (2019). Navigating equity work in engineering: Contradicting messages encountered by minority faculty. *Digital Creativity*, *30*(4), 329-344.
- Farrell, S., Forin, T. R., Jahan, K., Dusseau, R. A., Bhavsar, P., Sukumaran, B. (2017). Developing Multiple Strategies for an Inclusive Curriculum in Civil Engineering. Presented at ASEE (Paper ID: 18938)
- Ferrini-Mundy, J. (2013). Driven by diversity. Science, 340(6130), 278-278
- Gallimore, D. (2021, August, 30). It's Time for Engineering to Be Equity-Centered. https://www.insidehighered.com/views/2021/08/30/diversity-equity-and-inclusion-should-be-required-engineering-schools-curricula
- Garcia-Holgado, A., Vázquez-Ingelmo, A., Verdugo-Castro, S., González, C., Gómez, M. C. S., & Garcia-Peñalvo, F. J. (2019, April).
 Actions to promote diversity in engineering studies: a case study in a Computer Science Degree. In 2019 IEEE Global Engineering Education Conference (EDUCON) (pp. 793-800). IEEE
- Grimes, J., & Grimes, M. (2014). Engineering Justice. In *Approaches to Managing Organizational Diversity and Innovation* (pp. 1-23). IGI Global.
- National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.
- National Academies Press (2018). Engineering Societies' Activities in Promoting Diversity and Inclusion: Proceedings of a Workshop in Brief. https://www.nap.edu/read/25323/chapter/1
- Riley, D. (2008). Engineering and social justice. Synthesis Lectures on Engineers, Technology, and Society, 3(1), 1-152.
- Roos, H. (2019). Inclusion in mathematics education: an ideology, a way of teaching, or both?. *Educational Studies in Mathematics*, 100(1), 25-41.
- Royal Academy of Engineering (2018, July). Designing inclusion into engineering education A fresh, practical look at how diversity impacts on engineering and strategies for change. https://www.raeng.org.uk/publications/reports/designing-inclusion-into-engineering-education
- Leydens, J. A., & Lucena, J. C. (2017). Engineering justice: Transforming engineering education and practice. John Wiley & Sons.

QUESTIONS & COMMENTS

